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ABSTRACT

Molecular dynamics is crucial for understanding molecular systems but its appli-
cability is often limited by the vast timescales of rare events like protein folding.
Enhanced sampling techniques overcome this by accelerating the simulation along
key reaction pathways, which are defined by collective variables (CVs). However,
identifying effective CVs that capture the slow, macroscopic dynamics of a sys-
tem remains a major bottleneck. This work proposes a novel framework coined
BIOEMU-CV that learns these essential CVs automatically from BioEmu, a re-
cently proposed foundation model for generating protein equilibrium samples. In
particular, we re-purpose BioEmu to learn time-lagged generation conditioned on
the learned CV, i.e., predict the distribution of molecular states after a certain
amount of time. This training process promotes the CV to encode only the slow,
long-term information while disregarding fast, random fluctuations. We validate
our learned CV on fast-folding proteins with two key applications: (1) estimating
free energy differences using on-the-fly probability enhanced sampling and (2)
sampling transition paths with steered molecular dynamics. Our empirical study
also serves as a new systematic and comprehensive benchmark for MLCVs on
fast-folding proteins larger than Alanine Dipeptide.

1 INTRODUCTION

Many problems in biomolecules reduce to understanding the complex behavior of how molecules
move and change conformations, such as estimating the drug-target binding affinities (De Vivo et al.,
2016; Abel et al., 2017) or the folding time of proteins (Piana et al., 2012; Spotte-Smith et al.,
2022). Molecular dynamics (MD) simulation is one of the principal ways to study the movements
in molecular systems, describing the microscopic movements by integrating differential equations
with femtosecond (10−15) time step. However, events like protein folding often happen in a much
larger time-scale, from microseconds (10−6) to milliseconds (10−3). Due to this timescale gap,
observing desired events in naive MD requires integrating over computationally infeasible number
of step, which is considered unrealistic for most real world problems.

To overcome this timescale limitation, various enhanced sampling techniques have been stud-
ied (Hénin et al., 2022). Metadynamics (Barducci et al., 2011) applies biasing force to the molec-
ular systems to encourage transitions, while replica-exchange MD (Sugita & Okamoto, 1999) ex-
changes configurations between parallel simulations at different temperatures. Also, accelerated
MD (Hamelberg et al., 2004) globally boosts the potential energy surface to overcome energy bar-
riers. Their core idea is to add biasing forces throughout the simulation to guide exploration and
transitions in the molecular state space, without breaking the equilibrium conditions. Importantly,
this biasing forces are computed based on a low-dimensional representation, denoted as the collec-
tive variables (CVs). Therefore, CVs well encoding the slow degree of freedom will add biases to
numerously seen CVs, resulting exploration and transition to unseen and less visited states.
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However, CVs have been mainly hand-crafted by domain expertise, e.g., selection of specific back-
bone dihedral angles for Alenine Dipeptide, which may miss slow modes and has been limited to
small systems. To resolve this issue, several works have considered machine-learned CVs (ML-
CVs) from MD trajectory data. Supervised methods use ground-truth state definitions and pseudo-
labels (Bonati et al., 2020; Trizio & Parrinello, 2021), while self-supervised methods rely on time-
lagged data to encode the dynamics information (Bonati et al., 2021; Wehmeyer & Noé, 2018;
Hernández et al., 2018). While prior works have shown promising results on small systems such as
alanine dipeptide, they currently lack the ability to scale to larger systems such as proteins and lack
standardized, side-by-side systematic comparison.

In this work, we present a simple yet efficient framework for learning collective variables (CVs)
from the latent representation of a molecular foundation model. Inspired by recent research ex-
tracting condition representations from text-to-image diffusion models (Zhang et al., 2023; Mou
et al., 2024), we train an MLCV encoder to learn the latent representations in an existing molec-
ular foundation model, BioEmu (Lewis et al., 2025). Building upon its capability of generating
multiple protein conformations, we condition time-lagged data and use them as CVs for enhanced
sampling techniques. Additionally, we benchmark prior MLCVs on three fast-folding proteins for
two downstream tasks by enhanced sampling simulations along with extensive qualitative analysis.

To summarize, our contribution is as follows:

• We propose a framework extracting collective variables from the time-lagged condition
representations of a frozen foundation model.

• We extensively benchmark MLCVs with two downstream tasks for the slow degree of
freedom: free energy difference estimation and transition path sampling for proteins in
explicit water solvent simulations. Furthermore, we demonstrate that our BIOEMU-CV
shows competitive performance in these tasks as well as meta-stable state discrimination.

2 BACKGROUND

Molecular dynamics (MD). MD simulations model the time evolution of molecular systems
through atomic coordinates and velocities. An illustrative MD is the underdamped Langevin dy-
namics (Bussi & Parrinello, 2007) as follows:

dxt = vtdt, dvt =
−∇U(xt)

m
dt− γvtdt+

√
2γkBT

m dWt ,

where xt and vt are atomic positions and velocities, m is the mass, U(xt) the potential energy,
and −∇U(xt) the force. The parameters γ, kB , T , and Wt denote the friction coefficient, Boltz-
mann constant, temperature, and Brownian motion, respectively. While MD simulations provide
atomic-level insights into dynamic process, it remains limited by timescales. The high energy bar-
riers between states makes rare events difficult to observe such as transition paths, often requiring
unrealistic long MD simulations (Valsson et al., 2016).

Enhanced sampling and collective variables (CVs). To overcome the timescale limitations of
the standard MD simulations, enhanced sampling methods introduce biasing forces or potentials
to accelerate transitions. Popular approaches include metadynamics (Barducci et al., 2011, MTD),
well-tempered metadynamics (Barducci et al., 2008, WTMD), replica-exchange molecular dynam-
ics (Hukushima & Nemoto, 1996, REMD), and on-the-fly probability enhanced sampling (Invernizzi
& Parrinello, 2020, OPES). These methods typically rely on a low-dimensional descriptors known
as collective variables (CVs), which serve as a biasing coordinate in the simulation (Bonati et al.,
2023). Formally, the CVs, denoted by c, is represented as a set of functions of atomic position x:

c(x) = [ξ1(x), . . . , ξd(x)],

where d ≪ 3N is the number of CVs. In this work, we fix the dimensionality to one for simplic-
ity and visibility. CVs are designed to capture the system’s slow degree of freedom, often chosen
based on domain knowledge, such as specific backbone dihedral angles or inter-residue contact
distances (Piana & Laio, 2007). However, handcrafted CVs remain mostly limited to small sys-
tems (Pietrucci & Laio, 2009; Noé & Clementi, 2017).

Machine-learned collective variables (MLCVs). Recent methods employ machine learning
to automatically identify CVs beyond handcrafted features. Supervised approaches such as
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Figure 1: Overview of our framework and evaluation simulation. (Left) We train an encoder on
top of the conditions of a frozen molecular foundation model to learn collective variables (CVs) for
protein, highlighted in red dotted lines, on top of a frozen pre-trained BioEmu. (Right) Two down-
stream tasks for the slow degree of freedom, free energy estimation and transition path sampling.

DeepLDA (Bonati et al., 2020) and DeepTDA (Trizio & Parrinello, 2021) learn CVs through dis-
criminant analysis. However, they require predefined binary state labels, where one needs to spec-
ify a representative folded state and choose an RMSD threshold for classification. In contrast,
self-supervised and time-lagged methods instead leverage dynamical information from trajectories.
DeepTICA (Bonati et al., 2021) applies time-lagged independent component analysis (Molgedey
& Schuster, 1994, TICA) as a loss for encoded representations. The time-lagged autoencoder
(Wehmeyer & Noé, 2018, TAE) and variational dynamics encoder (Hernández et al., 2018, VDE)
reconstructs future configurations xt+τ from the present configuration xt, deriving latent represen-
tations as CVs using autoencoders (Rumelhart et al., 1985) and variational autoencoders (Kingma
& Welling, 2014), respectively. However, existing methods mostly focus on small systems such as
alanine dipeptide, and systematic comparisons across approaches are absent.

3 METHOD

Overview. We aim to learn an encoder that outputs a low-dimensional vector representing the slow
degree of freedom in molecules, known as collective variables (CVs). Inspired by recent works on
conditioning frozen foundation models (Zhang et al., 2023; Mou et al., 2024), we re-purpose the
BioEmu model. As shown in Figure 1a, instead of using it for its original purpose of generating
protein conformation ensemble, we add an encoder to extract its low dimensional representation
to serve as CV, which we call BIOEMU-CV. This CV learns the slow dynamics by approximating
the molecular dynamics (MD) propagator with a conditional generative model, which generates a
subsequent state from a current state and a time lag similar to Hernández et al. (2018).

Task formulation. Given a protein configuration represented by atomic coordinates in x ∈ RN×3

where N is the number of atoms, our goal is to learn an encoder fθ that maps the high-dimensional
structure into a low-dimensional representation c = fθ(x) ∈ Rd with d≪ 3N . This representation,
the CVs, should qualify three criteria for the use of enhanced samplings: (i) being low-dimensional,
(ii) capturing the system’s slow degree of freedom, and (iii) discriminating the folded and unfolded
states in protein (Fu et al., 2024). We fit the first criteria by using a one-dimensional CV, and
evaluate the meta-stable state discrimination with secondary structures which are highly correlated
to the folded states. For the second and most important criterion, we evaluate MLCVs with two
downstream tasks requiring to encode the slow degree of freedom: (i) free energy estimation and
(ii) transition path sampling, each by different enhanced sampling techniques.

Biomolecular Emulator (BioEmu). BioEmu (Lewis et al., 2025) generates the conformational en-
semble at full-atom resolution unlike structure prediction models such as AlphaFold (Jumper et al.,
2021), which return a single low-energy conformation given a protein sequence. We focus on the
capability to generate protein conformation ensemble, and re-purpose it for learning collective vari-
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Figure 2: Free energy (top) and PMF (bottom) estimation from 1 µs OPES simulations for
Chignolin. We average over four seeds. Green dotted lines indicate the reference value, and blue
lines refer to free energy difference during the OPES simulations. Solid lines refer to the mean, and
shaded areas are the standard deviation. DeepTICA shows negative values beyond -1 in PMF, even
normalized to the DESRES trajectory, falls short of accurately capturing the reference PMF.

ables (CVs). Formally, given an amino acid sequence A = [A1, A2, . . . , An] of length n, BioEmu
is a sequence-conditioned denoising diffusion model gϕ(x|A) to sample from the equilibrium distri-
bution p(x|A). To be specific, the protein sequence encoder of the BioEmu produces two represen-
tations from the amino acid token with Evoformer (Jumper et al., 2021): the single representations
h := {hi}Ni=1 and the pair representations z := {zij}Ni,j=1 where i, j refer to the amino acid index.
Based on these two representations, the score model gϕ generates α-carbon (Cα) coordinates and
residue orientations for the protein backbone. Side chains are then reconstructed using the hpacker
package (Visani et al., 2024), followed by short molecular dynamics (MD) simulations for energy
relaxation with OpenMM (Eastman et al., 2017).

Extracting CVs from foundation model. Recent advances in generative models demonstrate that
additional condition encoders with lightweight adapters can be trained on top of unconditional gen-
erative models for external guidance (Zhang et al., 2023; Mou et al., 2024). Inspired by this line of
research, we propose a framework for using a low-dimensional encoder output as collective variables
(CVs); an overview is shown in Figure 1. We train an encoder fθ that maps a configuration x at time
t to a low-dimensional vector, i.e., ct = fθ(xt) ∈ Rd. Then, we fuse the encoded representation
to the single representation h using a small MLP to preserve dimensionality to the score model and
keep the adapter lightweight (Zhang et al., 2023). The conditioned representation ht = MLP(h, ct)
and pair representation z are passed to the score model to generate protein conformations.

Learning CVs from time-lagged generation. With this condition pathway in place, we encode
CVs of the current conformation but guide the model to generate the time-lagged conformation
xt+τ , i.e., the score model generates the time-lagged state xt+τ from the CVs ct with a time lag τ .
Intuitively, the CV ct compresses the information that is shared across xt and xt+τ , i.e., the slow
degree of freedom, while disregarding fast and randomly fluctuating information that is present in
the current state xt but not in the time-lagged state xt+τ . Note that our training objective shares the
motivation with VDE (Hernández et al., 2018), but we use a scalable diffusion model architecture
and do not need the auto-correlation loss.

To keep the training lightweight, we freeze parameters ϕ of BioEmu, and update the encoder and the
conditioning MLP via the denoising score-matching objective (Song et al., 2020; Yim et al., 2021):

L(xt, xt+τ , A) = Es∼U [0,1]

[
λs

∥∥∥∇ log ps|0

(
x
(s)
t+τ |x

(0)
t+τ , xt, A

)
− gϕ(s, ht, z)

∥∥∥2] , (1)

where s is the diffusion time, ps|0 is the density of x(s)t+τ given x(0)t+τ , xt, A, λs > 0 the time schedul-
ing weights, and gϕ the BioEmu’s score network. This time-lagged reconstruction forces ct to
capture the slow degree of freedom by incorporating future time-lagged conformation xt+τ from
the trajectory data, thereby producing CVs suitable for enhanced sampling.
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Table 1: Quantitative results of 1 µs OPES simulations for three fast-folding proteins in explicit
water solvent. We report the reference free energy difference (∆Fref) from the full dataset, the av-
erage free energy difference (∆F ) from simulations, the absolute error between two energy values
(|∆Fref −∆F |), and the potential of mean force (PMF) MAE. Results are averaged over four sim-
ulations for Chignolin, and three simulations for Trp-cage and BBA. We mark not applicable (N/A)
for CVs that fail at meta-stable state discrimination or show a different sign with the reference value.

Molecule Method ∆Fref ∆F |∆Fref −∆F | (↓) PMF MAE (↓)

Chignolin

DeepTICA -3.73 -2.02± 3.65 1.71 2.64±3.80

TAE -3.79 -1.26± 3.69 2.53 3.15±2.81

VDE -17.24 0.24± 5.00 N/A 4.09±3.20

BIOEMU-CV -3.71 -3.19± 3.97 0.52 3.07±2.53

Trp-cage

DeepTICA 3.70 6.53± 7.31 2.73 8.94±7.43

TAE -1.45 8.74± 1.65 N/A 9.32±3.91

VDE 0.07 N/A N/A N/A
BIOEMU-CV 4.15 5.97± 3.01 1.82 6.86±4.38

BBA

DeepTICA 2.76 13.95±13.28 11.19 10.51±5.85

TAE -2.88 -5.46± 4.42 N/A 9.97±3.68

VDE -2.74 N/A N/A N/A
BIOEMU-CV 2.77 9.99± 5.43 7.22 8.34±7.46

4 EXPERIMENT RESULTS

Evaluation setup. We consider three fast-folding protein in explicit water solvent from Lindorff-
Larsen et al. (2011); Chignolin, Trp-cage, and BBA. For more detail on protein data, refer to Sec-
tion A. We quantitatively evaluate MLCVs with two downstream tasks that require encoding the
slow degree of freedom: (i) free energy difference estimation, and (ii) transition path sampling.
We use on-the-fly probability enhanced simulation (Invernizzi & Parrinello, 2020, OPES) and CV-
steered MD simulation (Izrailev et al., 1999; Fiorin et al., 2013b, SMD) for each task, respectively.
Furthermore, we extensively investigate the interpretability of CVs with respect to input descriptors
with the sensitivity analysis, and analyze meta-stable state discrimination with secondary structures
known to be present in the folded states following Fu et al. (2024).

Baselines. We compare our method against self-supervised CV learning methods: DeepTICA (Bon-
ati et al., 2021), time-lagged autoencoder (Wehmeyer & Noé, 2018, TAE), and variational dynamics
encoder (Hernández et al., 2018, VDE). Since protein types and simulation configuration vary sig-
nificantly by methods and lack systematic comparison, we train from scratch on identical data and
time-lag with baselines using the mlcolvar package (Bonati et al., 2023). We use pairwise Cα

distances for inputs to ensure rotation and translation invariance following prior works (Trizio &
Parrinello, 2021; Bonati et al., 2021), and fix CVs dimensionality to one. All MLCVs are normal-
ized to the range [−1, 1] on the full DESRES trajectory after training for simplicity and visibility,
with the sign assigning the folded state to one. For more detail on baselines, refer to Section B.

4.1 FREE ENERGY DIFFERENCE ESTIMATION

We first quantify whether MLCVs encode the slow degree of freedom by estimating the free energy
difference ∆F , with on-the-fly probability enhanced simulations in explicit water solvent.

On-the-fly probability enhanced simulations. We run four independent 1 µs on-the-fly probability
enhanced sampling (Invernizzi & Parrinello, 2020, OPES) simulations initialized from the folded
state. OPES iteratively reconstructs the target probability along the CVs at a pre-defined interval,
adding bias that continuously drives transitions between the folded and unfolded states. This enables
the estimation of the folding free-energy difference and the potential of mean force (PMF). For more
details on the OPES simulations, please refer to Section B.
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Table 2: Quantitative results of steered molecular dynamics on three fast-folding proteins in
explicit water solvent. RMSD and THP are averaged over paths obtained from 16 SMD simula-
tions, while max energy (ETS) is averaged over paths hitting the target meta-stable state. k is the
force constant, which is a scaling factor of the harmonic bias potential used in SMD. Best results
are highlighted in bold and second in underline. We mark not applicable (N/A) for CVs that fail at
state discrimination and trajectories not arriving at the target meta-stable state.

Molecule Method k
RMSD (↓) THP (↑) ETS (↓)

Å % kJ/mol

Chignolin

DeepTICA 10000 2.45±0.86 37.5 -81102.41±521.27

TAE 10000 1.95±0.72 43.8 -81914.87±114.30

VDE 10000 2.08±0.56 43.8 -82026.62± 77.63

BIOEMU-CV 10000 1.20±0.33 100.0 -82055.15± 98.48

Trp-cage

DeepTICA 20000 2.37±0.47 31.2 -63611.88± 57.49

TAE 20000 2.75±0.35 0.0 N/A
VDE N/A N/A N/A N/A
BIOEMU-CV 20000 2.31±0.52 31.2 -63787.51± 31.23

BBA

DeepTICA 50000 2.67±0.37 18.8 -130418.50±477.68

TAE 50000 4.83±0.42 0.0 N/A
VDE N/A N/A N/A N/A
BIOEMU-CV 50000 2.05±0.24 93.8 -131315.59±116.23

BB
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Figure 3: 3D Visualization of transition paths. The sampled folding pathways of Chignolin, Trp-
cage, and BBA by steered MD with BIOEMU-CV. For simplicity, we visualize the Cα coordinates.

Evaluation criteria. Following Yang et al. (2024), we measure (i) the convergence of the estimated
reaction free energy of folding (∆F ), and (ii) the quality of the potential of mean force (PMF).
We compute the two meta-stable state basins, folded and unfolded states, by dividing the CV range
in half as in prior work. The reference values for each protein are computed from MLCVs of the
full DESRES trajectory with the multi-state Bennett acceptance ratio analysis (Shirts & Chodera,
2008, MBAR). In short, CVs well encoding the slow degree of freedom are expected to have similar
distributions between the 1 µs OPES simulation and the long naive reference ∼100 µs DESRES
simulation. Note that we exclude results on MLCVs that fail on the basic criterion of discriminating
between the folded and unfolded states; see more detail in Section 4.4. Since inadequate CVs
produce non-converged biases and misleading PMFs, OPES cannot reliably drive transition, and its
PMFs are meaningless. Results are averaged over four runs for Chignolin and three runs for Trp-
cage and BBA, with one outlier excluded from the original four following Yang et al. (2024). For
more details on evaluation metric and outlier criterion, refer to Section B.

Results. In Table 1, we report the reference free energy difference (∆Fref), free energy difference
averaged over simulations (∆F ), and the potential mean force (PMF) MAE. In Figure 2, we addi-
tionally plot the free energy difference throughout the OPES simulations. For the full results, please
refer to Section C. In the following, we interpret the results in both quantitative and qualitative as-
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Figure 4: Transition paths projected onto TICA coordinates, sampled by MLCV steered MD.
The white star and circle each refer to the representative unfolded and folded state, with each paths
colored differently. The red convex hull is the folded states defined as RMSD from the representative
folded state with cut off 2, 2, and 2.5 Å for Chignolin, Trp-cage, and BBA, respectively.

pects. While most MLCVs fairly converge for Chignolin and work for larger proteins, VDE fails
to scale to large proteins. Additionally, TAE appears to converge for Trp-cage, but only because
it samples exclusively the unfolded state. As shown in Figure 10, the folded state is barely visited
resulting convergence at an incorrect ∆F , with the wrong sign relative to the reference value. Simi-
larly, DeepTICA samples the folded state with high deviation even though the outlier was removed,
resulting fluctuation in the PMF. We have clarified more interpretation in detail at Appendix C.

4.2 TRANSITION PATH SAMPLING

We also evaluate the slow degree of freedom in CVs by sampling transition paths of the fast-folding
proteins, with CV-steered molecular dynamics simulations in explicit water solvent.

Steered molecular dynamics. We sample transition paths with steered molecular dynam-
ics (Izrailev et al., 1999; Fiorin et al., 2013b, SMD). SMD is an enhanced sampling technique that
steers the protein conformation towards a pre-defined target state with a time-dependent biasing
force. CVs that well encode the slow degree of freedom would produce low-energy transition paths
when used with SMD. For each protein, we do 16 NVT simulations for 500 ps using the Langevin
Integrator with 1 fs time step. For more detail about SMD, refer to Section B.

Evaluation criteria. To evaluate the transition paths from SMD simulations, we first define the
target state as the local minimum on the potential energy surface corresponding to the folded state.
We then evaluate the transition paths using three metrics from Seong et al. (2025): (i) Cα-RMSD
between the final state of a path and the target state, (ii) the target hit percentage (THP) of sampled
paths, and (iii) the transition state energy (ETS), i.e., the maximum energy of states of a transition
path that hits the target meta-stable state. For THP, a transition path is considered to hit the target
meta-stable state if its final state is within 2 Å Cα-RMSD from the target state, regarding the state
definition in Lindorff-Larsen et al. (2011). Again, for the transition path sampling task, any MLCVs
that failed to discriminate between the folded and unfolded states of the protein were excluded.

Results. In Table 2, BIOEMU-CV shows the best results in hitting the target meta-stable states while
achieving low transition state energies. Additionally in Figure 3, we visualize the Cα atoms in the
folding process under BIOEMU-CV steered MD for qualitative assessment. For the visualization of
baseline CV-steered MD, refer to Section C. In Figure 4, we also visualize the sampled transition
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Figure 5: MLCV sensitivity to Cα-wise distances. We plot the top Cα-wise distances with the
highest sensitivity for each MLCV, where the x and y axis each denotes the residue index for input
distances and the corresponding sensitivity value. For each sensitivity plot, we visualize top sensitive
distances in the unfolded and folded state, with colors highlighted in the sensitivity plot.

paths of three fast-folding proteins from SMD simulations, by projecting them onto time-lagged
independent component analysis (Molgedey & Schuster, 1994, TICA) made from the full DESRES
trajectory. We find that transition paths from our MLCVs show better target reaching and follow the
region with a low PMF value defined on two time-lagged independent components.

4.3 INTERPRETABILITY OF CVS

Beyond enhanced sampling tasks, we further assess the physical interpretability of MLCVs.

Sensitivity analysis. We evaluate the interpretability of MLCVs by examining how each MLCV
changes to their input descriptors, i.e., the sensitivity to the Cα-wise distance (Bonati et al., 2020;
Trizio & Parrinello, 2021). To be specific, we use the sensitivity analysis function from
the mlcolvar library (Bonati et al., 2023), which computes the sensitivity by the gradients of each
MLCV with respect to every input feature. We aggregated the values with the mean of the absolute
values, and visualize the top-most sensitive distances in the folded state and unfolded state.

Results. As shown in Figure 5, BIOEMU-CV consistently assigns high sensitivity on distances
that strongly discriminate the folded and unfolded state, typically long-range contacts spanning the
secondary structure for folding. For example in Chignolin, BIOEMU-CV is most sensitive to the
distance TYP1-TYR10 and also sensitive to ASP3-TRY8, where a hydrogen bond is observed at
folding (Yang et al., 2024). In contrast, DeepTICA and VDE often emphasize distances that provide
weaker structural discrimination, e.g., DeepTICA is sensitive to the distances of ASP3-GLU5 and
TYR1-PRO4 which does not differ much between the folded and unfolded state. Overall, these re-
sults indicate that BIOEMU-CV not only captures the slow dynamical modes required for enhanced
sampling, but also learn physically meaningful structural relationships.

4.4 META-STABLE STATE DISCRIMINATION ANALYSIS

Finally, we extensively analyze whether MLCVs clearly discriminate folded and unfolded states,
following the criteria of Fu et al. (2024). To be specific, we test whether the folded and unfolded state
ensemble occupy distinct ranges of MLCVs and report their distribution statistics across proteins.

8



Preprint, under review

Table 3: State discrimination analysis of MLCVs. We report the average MLCVs for the folded
and unfolded states obtained from the full DESRES trajectory. VDE fails to separate the folded and
unfolded states on Trp-cage and BBA, both showing positive ranges.

Method Chignolin Trp-cage BBA
Folded Unfolded Folded Unfolded Folded Unfolded

DeepTICA 0.85±0.06 -0.49±0.11 0.70±0.12 -0.74±0.01 0.75±0.07 -0.51±0.05

TAE 0.78±0.07 -0.82±0.13 0.94±0.03 -0.95±0.02 0.40±0.08 -0.90±0.05

VDE 0.84±0.07 -0.74±0.13 1.00±0.00 0.87±0.13 1.00±0.00 1.00±0.00

BIOEMU-CV 0.82±0.06 -0.94±0.05 0.96±0.03 -0.90±0.03 0.94±0.04 -0.93±0.05

BIOEMU-CVDeepTICA VDETAE
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✅ ✅ ❌ ✅

✅ ✅ ✅ ✅

✅ ✅ ❌ ✅

Figure 6: (Left) Visualizations of the folded and unfolded states for three protein. (Right) TICA
projections of the full DESRES trajectory, colored by each MLCVs. The folded and unfolded states
are marked by a white circle and a white star, respectively. All MLCVs are normalized to the range
[−1, 1], with signs flipped such that folded state corresponds to +1 for consistency and visibility.
As the protein size increases, prior methods struggle with state discrimination, for instance, VDE.

In case of Chignolin, we cross-validate against standard descriptors, e.g., the committor function
and native hydrogen bond numbers. We also probe sensitivity to structural motifs by analyzing the
secondary structure elements involved in the folded state, e.g., α-helix and β-sheet.

Meta-stable state discrimination. First, we verify whether the CVs truly distinguish the folded
and unfolded states of proteins. In Figure 6, we color each TICA coordinates with its MLCVs. We
use a time lag of τ = 1000 for BBA and τ = 10 otherwise for TICA plots. While most methods
distinguish the folded and unfolded states, prior works tend to fail at BBA. In Table 3, we report
the average MLCVs for the folded and unfolded states gathered from the full DESRES trajectory.
Noticeably, VDE shows similar values for Trp-cage and BBA. We plot the detailed distribution
of MLCVs for the folded and unfolded states in Section C, where VDE fails at meta-stable state
discrimination showing almost identical results between MLCVs of the folded and unfolded states.

Table 4: Pearson correlation
between MLCVs and the Chig-
nolin committor function.

Method Pearson corr.

DeepTICA 0.682
TAE 0.744
VDE 0.778
BIOEMU-CV 0.748

Chignolin analysis. We also analyze CVs for Chignolin with well-
known descriptors, the committor function. The committor func-
tion provides a quantitative measure of progress along the folding
pathway on a scale from [0, 1]. We use the committor function
from Kang et al. (2024), estimated in a data-driven manner. In
Table 4, we report the Pearson correlation between the committor
function and MLCVs. DeepTICA shows relatively weak corre-
lation with the committor values, whereas other methods demon-
strate stronger alignment. For more detail on Chignolin descrip-
tors, refer to Section B.

9
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BIOEMU-CVDeepTICA VDETAE

GLU17
𝛼-helix

ARG10
𝛽-sheet

LYS6
𝛽-sheetARG10

LYS6

GLU17

1 2 3 4 5

States DeepTICA TAE VDE BIOEMU-CV
1 -0.59 -0.30 1.00 -0.97
2 -0.15 -0.01 1.00 -0.58
3 -0.16 -0.28 1.00 -0.13
4 0.27 0.04 1.00 0.35
5 0.77 0.36 1.00 0.88

Figure 7: Secondary structure analysis on BBA. (Top) Folded-state visualization of the BBA pro-
tein, with α-helix and β-sheet highlighted in orange and green, respectively. We also plot the ML-
CVs distribution for the residues included in the secondary structures, for residues showing specific
secondary structures in the folded state. C, H, and E each correspond to coil (irregular elements),
α-helix, and β-sheet secondary structures. TAE and VDE fails to assigns distinct values to helix and
sheet structures. (Bottom) Visualizations and MLCVs on states in the DESRES trajectory having
partial secondary structures. Residues are colored according to the DSSP value. DeepTICA and our
MLCVs align with the secondary structures.

Table 5: Average fraction of
residues forming the secondary
structure in unfolded states.
Unfolded refers to the fraction of
residues regardless of type.

Protein α-helix β-sheet Unfolded

Chignolin 0.00 0.00 0.00
Trp-cage 0.02 0.01 0.03
BBA 0.06 0.04 0.08

Secondary structure analysis. Finally, we analyze the cor-
relation between CVs and the secondary structure of proteins.
As seen in Table 5, secondary structure are mostly observed
in the folded state clearly distinguished from the unfolded
states (Lindorff-Larsen et al., 2011), therefore CVs should cap-
ture their presence to describe the folding dynamics (Ahalawat
& Mondal, 2018). We compute the residue-level secondary
structure using the dictionary of secondary structures in pro-
teins (Kabsch & Sander, 1983; McGibbon et al., 2015, DSSP),
which classifies structures based on hydrogen-bond patterns. In
Figure 7, we plot the MLCV distribution against the known
secondary structures in BBA. While the folded states of BBA contain one α-helix and two β-
sheets (Lindorff-Larsen et al., 2011), TAE and VDE encode nearly identical CVs regardless of the
secondary structures in contrast to DeepTICA and BIOEMU-CV successfully separating them.

5 CONCLUSION

We present BIOEMU-CV, a lightweight framework that learns collective variables (CVs) from time-
lagged conditioning signals on a frozen BioEmu foundation model. Given the current structure, we
derive a low-dimensional CV and inject it into BioEmu’s single representation; where only this con-
ditioning path is trained with a denoising score-matching objective, leaving the backbone untouched.
We systematically evaluate MLCVs on three fast-folding proteins with two downstream tasks, esti-
mating free energy differences with OPES simulations and transition path sampling with CV-steered
MD. Our experiments that BIOEMU-CV successfully identifies important macroscopic movements
related to the slow degree of freedom, along with qualitative evaluation on state discrimination.
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Deeptime: a python library for machine learning dynamical models from time series data. Ma-
chine Learning: Science and Technology, 2021. 24

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Berend Ensing, and Max Welling. Stochastic
optimal control for collective variable free sampling of molecular transition paths. Advances in
Neural Information Processing Systems, 36:79540–79556, 2023. 26

Shinya Honda, Toshihiko Akiba, Yusuke S Kato, Yoshito Sawada, Masakazu Sekijima, Miyuki
Ishimura, Ayako Ooishi, Hideki Watanabe, Takayuki Odahara, and Kazuaki Harata. Crystal
structure of a ten-amino acid protein. Journal of the American Chemical Society, 130(46):15327–
15331, 2008. 16

12



Preprint, under review

Koji Hukushima and Koji Nemoto. Exchange monte carlo method and application to spin glass
simulations. Journal of the Physical Society of Japan, 65(6):1604–1608, 1996. 2

Michele Invernizzi and Michele Parrinello. Rethinking metadynamics: from bias potentials to prob-
ability distributions. The journal of physical chemistry letters, 11(7):2731–2736, 2020. 2, 5

Sergei Izrailev, Sergey Stepaniants, Barry Isralewitz, Dorina Kosztin, Hui Lu, Ferenc Molnar, Willy
Wriggers, and Klaus Schulten. Steered molecular dynamics. In Computational Molecular Dy-
namics: Challenges, Methods, Ideas: Proceedings of the 2nd International Symposium on Algo-
rithms for Macromolecular Modelling, Berlin, May 21–24, 1997, pp. 39–65. Springer, 1999. 5,
7, 20

William L Jorgensen, Jayaraman Chandrasekhar, Jeffry D Madura, Roger W Impey, and Michael L
Klein. Comparison of simple potential functions for simulating liquid water. The Journal of
chemical physics, 79(2):926–935, 1983. 20

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
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A DATA DETAILS

A.1 PROTEIN DATA

Proteins are a sequence of amino acid building blocks, each represented by one letter. Below, we
provide statistics on the proteins we used in this work. Protein size ranges from 10 to 35 residues,
166 to 504 atoms. C The PDB ID in the Table 6 refers to the discovered experimental structures in
the PDB with the smallest error. In case of Chignolin, it is closest to the NMR structure of CLN025
reported by Honda et al. (2008). Trp-cage corresponds to the K8A mutant of the thermostable Trp-
cage variant TC10b in Barua et al. (2008), and BBA, i.e., short for beta-beta-alpha, corresponds to
the FDS-EY peptide in Sarisky & Mayo (2001).

Table 6: Details on three proteins used in this work, selected among the DESRES fast folding
proteins.

Protein PDB ID # of Residues # of Atoms # of CA pairs Sequence

Chignolin CLN025 10 166 45 YYDPETGTWY
Trp-cage 2JOF 20 272 190 DAYAQWLKDHHPSSGRPPPS
BBA 1FME 28 504 378 LSDEDFKAVFGMTRSAFANLPLWXQQHLXKEKGLF

A.2 DESRES TRAJECTORY DATASET

Lindorff-Larsen et al. (2011) provides twelve fast-folding proteins. Among them, we chose three
proteins to test MLCVs. For proteins given with multiple simulations, we sample from the longest
length simulation to use as the data. In other words, we use the simulation of length 223 µs for
the BBA protein. In Table 7, we denote the simulation time, average folding time, simulation tem-
perature, and the cubic box size of the simulations. Since DESRES simulations are recorded in 0.2
picoseconds intervals and reach millions of frames, we chose to randomly sample 50,000 frames as
in Lewis et al. (2025).

Table 7: Simulation details of three DESRES fast-folding proteins.

Protein Simulation time (µs) Avg. folding time (µs) Temperature (K) Cubic box (Å)

Chignolin 106 0.6 340 40
Trp-cage 208 14 290 37
BBA 223, 102 2.8 325 47

A.3 TIME-LAGGED INDEPENDENT COMPONENT ANALYSIS

Time-lagged independent component analysis (Molgedey & Schuster, 1994, TICA) is a linear trans-
formation method commonly used for dimensionality reduction, first used for molecular dynamics
in Naritomi & Fuchigami (2011). In short, it maps the given data to the slow process for a given
time-lag τ , by finding the coordinates of maximal auto correlation between time-lagged data pairs.
Therefore, TICA, combined with a long MD trajectory, will likely capture the slow degree of free-
dom well. In this work, we use the TICA model in pyemma (Scherer et al., 2015). All TICA plots
in the paper, e.g., Figure 4 and Figure 6, are made with the full DESRES trajectory with a log norm
applied. We use Cα pairwise distances for the input descriptors, and apply the switching function to
obtain the contact sij in the case of Chignolin as follows:

sij =
1− (rij/r0)

n

1− (rij/r0)m
,

where rij refers to the distances between Cα atoms i and j, r0=0.8nm, n = 6, and m = 12.
Intuitively, the contacts sij are a continuous version of the coordinate numbers.
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B SIMULATION AND EVALUATION DETAILS

B.1 QUALITATIVE VERIFICATION

CLN025 descriptors. CLN025 is known to form several hydrogen bonds at the folded state (Yang
et al., 2024). The criteria for hydrogen bonds are (i) the donor-acceptor distance being smaller than
0.35 nm, and (ii) the angle formed by the donor, acceptor, and hydrogen being bigger than 110◦.
The donor acceptor atom list is as follows:

1. TYR1 N, TYR10 OT1

2. TYR1 N, TYR10 OXT

3. ASP3 N, TRY8 O

4. THR6 OG1, ASP3 O

5. THR6 N, ASP3 OD1

6. THR6 N, ASP3 OD2

7. GLY7 N, ASP3 O

8. TYR10 N, TYR1 O

Committor function. The committor function q(x) is the probability that a trajectory initiated from
a configuration x reaches the folded state B before the unfolded state A. It is the solution to the
backward Kolmogorov equation with the boundary conditions q(x) = 0 for x ∈ A and q(x) = 1
for x ∈ B. We use the committor function from Kang et al. (2024) to evaluate its correlation
with MLCVs. In their approach, solving the Kolmogorov equation is reformulated as minimizing
a variational functional. To this end, they parameterize the committor function as a neural network
and train it using a self-consistent iterative procedure to optimize the functional.

Figure 8: TICA coordinates colored with committor values.
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Figure 9: Correlation to known descriptors for Chignolin. (Top) Scatter plot of correlation to the
committor function. (Bottom) Violin plot of correlation to the number of hydrogen bonds.
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Secondary structure. Protein secondary structures are local spatial structures made from the back-
bone excluding the side chain, key structures observed in the folded states. The two most common
structures are the α-helix and β-sheet shown in Figure 7, i.e., spiral coil-like structure and flattened
zig-zag-shaped structure, respectively. Secondary structures are formally defined by the pattern of
hydrogen bonds between the hydrogen atoms in the amino part and the oxygen atoms in the car-
boxyl. In this work, we use the dictionary of secondary structures proteins (Kabsch & Sander,
1983, DSSP) for the definition of secondary structures, implemented in the MDtraj library (McGib-
bon et al., 2015). Note that secondary structures are assigned for each residue, and three or more
consecutive residues with the same hydrogen bond are usually considered a full secondary structure.
For proteins simulated in Lindorff-Larsen et al. (2011), secondary structures are rarely observed in
the unfolded state as stated in Table 5. Additionally, in Table 8, we list the percentage of secondary
structures throughout the whole DESRES trajectory for each residue and protein. Three classes
of DSSP: C, E, and H each correspond to irregular elements, β-sheets, and α-helix. While DDSP
provides a detailed classification with eight classes, we selected the simplified one for this work.

Table 8: DSSP class percentage of each residue in Chignolin, Trp-cage, and BBA.

DSSP 0 1 2 3 4 5 6 7 8 9

C 100.0 25.5 53.8 99.2 98.6 98.4 98.5 52.7 24.7 100.0
E 0.0 74.5 46.2 0.0 0.2 0.1 0.1 46.3 74.6 0.0
H 0.0 0.0 0.0 0.8 1.2 1.5 1.5 1.0 0.6 0.0

Trp-cage 0 1 2 3 4 5 6 7 8 9

C 100.0 85.7 75.1 70.9 67.1 67.8 72.3 78.2 88.8 97.7
E 0.0 0.3 1.4 1.2 3.0 4.0 2.7 1.3 0.5 0.1
H 0.0 14.0 23.6 27.9 29.8 28.3 25.0 20.5 10.7 2.2

Trp-cage 10 11 12 13 14 15 16 17 18 19

C 83.6 80.9 75.7 80.1 95.6 94.6 100.0 100.0 99.8 100.0
E 1.7 2.1 4.6 2.4 0.6 5.4 0.0 0.0 0.2 0.0
H 14.7 17.0 19.7 17.5 3.8 0.0 0.0 0.0 0.0 0.0

BBA 0 1 2 3 4 5 6 7 8 9

C 100.0 96.4 79.1 75.5 68.1 64.6 70.1 89.2 93.7 73.9
E 0.0 3.0 9.5 10.7 16.0 21.0 23.1 5.1 1.3 20.2
H 0.0 0.6 11.4 13.8 15.9 14.4 6.8 5.6 5.0 5.9

BBA 10 11 12 13 14 15 16 17 18 19

C 70.8 75.5 91.0 94.6 71.6 67.5 67.3 67.3 67.4 67.7
E 23.8 19.4 5.9 3.8 3.0 4.6 4.3 2.9 2.7 2.6
H 5.5 5.1 3.2 1.5 25.4 27.9 28.4 29.8 30.0 29.7

BBA 20 21 22 23 24 25 26 27

C 61.2 61.5 65.6 71.2 83.6 94.0 98.5 100.0
E 4.6 5.6 4.1 2.4 4.6 2.3 0.6 0.0
H 34.2 32.9 30.2 26.4 11.8 3.7 0.9 0.0

B.2 BASELINE DETAILS

We test three self-supervised time-lagged MLCV baselines: DeepTICA (Bonati et al., 2021), TAE
(Wehmeyer & Noé, 2018), and VDE (Hernández et al., 2018). Since simulation configurations vary
in each paper, we retrain all models with the same data using the mlcolvar library (Bonati et al.,
2023). All models have the following identical configurations. We use a neural network size of [45,
100, 100, 1] with tanh as the activation function, and a dropout of 0.5. We split the dataset into 80%
for training and 20% for validation. Models, including ours, were trained for a maximum of 1000
epochs, with early stopping applied with a minimum delta of 0.1 and patience of 50 epochs. Unless
mentioned, we follow the basic configuration of the mlcolvar (Bonati et al., 2023).
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B.3 OPES SIMULATION DETAILS

Simulation settings. OPES simulations for all proteins were performed with GROMACS
2024.3 (Abraham et al., 2015) patched with PLUMED 2.10 (Tribello et al., 2014), on top of Docker
containers. Proteins were solvated in a cubic water with the same size as the reference simulation
data, and each neutralized using sodium or chloride ions. The protein molecule was parameterized
by the CHARMM27 force field (Piana et al., 2011), i.e., CHARMM22 plus CMAP backbone correc-
tion, and the modified TIP3P water model compatible with the CHARMM force field (MacKerell Jr
et al., 1998), analogously to the reference simulation data (Lindorff-Larsen et al., 2011). Simula-
tions were all performed in the NVT ensemble. Initial states were selected from folded states among
the original DESRES trajectory, where the folded state was identified with native contacts and sec-
ondary structures. Afterward, the state was equilibrated through short NVT and NPT simulations,
each of length 50 and 500 picoseconds, respectively. Temperatures were controlled with the veloc-
ity rescaling thermostat (v-rescale) (Bussi et al., 2007). Equations of motion were integrated with
a time step of 2 femtoseconds with the leap-frog algorithm (Hockney et al., 1974). Additionally,
the LINCS algorithm (Hess et al., 1997) was used to constrain all bonds involving the hydrogen
bonds. All simulations were run on a single GPU of RTX 3090 or RTX 4090, with four to nine days
depending on the protein size. Approximately 8,000 GPU hours were used for a single evaluation.

OPES configurations. We use configurations as in Table 9 for PLUMED, differing only in temper-
atures. A PACE of 500 steps is applied, i.e., 1 picoseconds. We use the same SIGMA value 0.05 and
BARRIER value 30 for all systems. Temperatures are identical to the reference simulation. The first
100 ns are discarded as equilibration time with 50 ns window unit time steps for Figures 2 and 10.

Table 9: OPES Simulation details of three DESRES fast-folding proteins.

Protein PACE SIGMA BARRIER (kJ/mol) Temperature (K)

Chignolin 500 0.05 30 340
Trp-cage (TC10b) 500 0.05 30 290
BBA 500 0.05 30 325

Evaluation metrics. We evaluate the learned collective variables (CVs) using two complementary
metrics from Yang et al. (2024): the free energy difference ∆F and the mean absolute error (MAE)
of the potential of mean force (PMF). The free energy difference ∆F quantifies the stability gap
between the folded and unfolded states. It is computed by integrating the PMF A(s) for CVs s over
the corresponding metastable basins,

∆F = −kBT log

( ∫
folded exp(−A(s)/kBT ) ds∫

unfolded exp(−A(s)/kBT ) ds

)
, (2)

where kB is the Boltzmann constant and T is the temperature. A lower ∆F error indicates that the
CV preserves the free energy difference between metastable states more accurately. For the folded
and unfolded basins, we divided the reference CVs range to half and use them for each one.

In addition, we use the mean absolute error (MAE) of the PMF to evaluate the agreement between
the biased and reference free-energy landscapes. PMF, The MAE is defined as

MAE(A,Aref) =

∫
|A(s)−Aref(s)| I[Aref(s) < Athres] ds∫

I[Aref(s) < Athres] ds
, (3)

where A(s) and Aref(s) are the PMFs from enhanced sampling and a long unbiased trajectory,
respectively, and I[·] is an indicator function restricting the comparison to regions with reference
free energy below a thresholdAthres = 25 kJ/mol. This metric captures deviations in both metastable
basins and transition regions.

Outlier simulation exclusion. As discussed in Yang et al. (2024), enhanced sampling simulations
driven by CVs may often get trapped in a local minima, leading to outlier simulation results. To
address this issue, we follow the standard practice of computing the metrics after removing a single
outlier run. Specifically, among the four simulations, we identify the outlier based on the final
free energy difference, i.e., the run whose value deviates the most from the mean, and exclude it.
Afterwards, the metrics are re-computed using the remaining three runs.
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B.4 STEERED MD SIMULATION DETAILS

Steered MD (Izrailev et al., 1999; Fiorin et al., 2013b, SMD) is an enhanced sampling method for
sampling transition paths. It drives the state toward the target meta-stable state along the time-
dependent reference CV using an additional harmonic potential. This biasing potential of SMD is
defined as

U(x, t) =
k

2

∥∥∥c(x)− cref
t

∥∥∥2 , cref
t = cinitial +

(ctarget − cinitial)t

T
, (4)

where k is the force constant, x the molecular configuration, t is the current step, T the total number
of steps, and cinitial, ctarget are the CV values at the respective meta-stable states. The reference CV
starts at the initial CV cinitial and ends at the target CV ctarget with constant rate (ctarget − cinitial)/T .
The bias potential U(x, t) restrains the current state to follow the reference states. To hit the target
meta-stable states better, in our experiments, we combine the MLCVs fθ(x) with (Kabsch aligned)
Cα-RMSD CV as c(x) = fθ(x) − RMSD(x, xtarget), following the technique supported in Fiorin
et al. (2013a).

We perform SMD simulations with the OpenMM software package (Eastman et al., 2023) to gener-
ate transition pathways. We use the CHARMM36 force field (Best et al., 2012) for the fast-folding
proteins and the modified TIP3P model (Jorgensen et al., 1983) for water molecules. We handle
long-range electrostatics via the Particle Mesh Ewald (PME) method (Ewald, 1921) with a 0.95 nm
cutoff. Constraining all bonds involving hydrogen atoms allow for a 1 fs integration timestep. We
run the simulations in the canonical (NVT) ensemble at 340 K. A Langevin integrator with a 1 ps−1

friction coefficient is used for the 500 ps NVT equilibration. Finally, since the CV depends only on
the Cα atom coordinates, we apply the biasing force, −∇xU(x, t), exclusively to them through the
OpenMM external force class.
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C ADDITIONAL RESULTS

C.1 OPES SIMULATION RESULTS
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Figure 10: Free energy difference (top) and PMF (bottom) for three proteins from 1 µs OPES
simulation. Green dotted lines indicate the reference value computed by CVs along the full DESRES
trajectory, while blue lines refer to values computed by CVs from the OPES simulations.

In Figure 10, Chignolin fairly converges while Trp-cage and BBA show relatively big deviations. In
the following, we qualitatively evaluate MLCVs for each protein averaged over three simulations.

Trp-cage. Although TAE converged with a small deviation, this is due to failing to sample enough
folded states. Also, the PMF for the folded state does not align with the reference, especially re-
garding the folded state region, i.e., the positive range of CVs. This indicates the failure of sampling
folded states, which leads to incorrect energy value convergence. Additionally, DeepTICA shows a
very low PMF compared to the reference PMF near CV ≈ 0. This indicates that while the unfolded
states were sampled properly, the folded states were not sampled enough or CVs identified as the
folded states were actually transition states, resulting in a severe mismatch between PMFs.

BBA. Once again, although TAE appears to converge closely to the reference value, we can identify
that only the folded states are exclusively sampled from the PMF plot. Unfolded states, i.e., CVs
being close -1, are not sampled at all, resulting in a convergence to an incorrect value. Furthermore,
the reference PMF shows only one distinct local minimum, indicating that the trained CV itself did
not properly discriminate between the folded and unfolded states. While one outlier simulation has
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been excluded for DeepTICA, the PMF plot shows divergence between simulations near the folded
states. This indicates that DeepTICA has failed to sample folded states properly, such as assigning
diverse CV values to similar folded states.

C.2 STATE DISCRIMINATION

In this section, we present the full qualitative results extended from Section 4.4. In Figure 11, we
visualize the MLCV value on the z-axis on top of the TICA plane. In Figure 12, we visualize the
violin plot of the MLCV of the folded and unfolded state. The states are collected from the full
DESRES trajectory, with an RMSD threshold cutoff.
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Figure 11: 3D visualization of protein conformations projected to TICA coordinates, with ML-
CVs as the z axis.

C
hi
gn

ol
in

Tr
p-
ca

ge
BB

A

BIOEMU-CVDeepTICA VDETAE

Figure 12: MLCV distribution of the folded and unfolded states. Average MLCV of the folded
and unfolded state is stated as the black dot, with the standard deviation in black lines.
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C.3 STEERED MD VISUALIZATION

We also visualize Cα of MLCV-steered MD trajectory for all baselines, following Figure 3. For the
folded state visualization in the DESRES data, refer to the one in Figure 6.
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Figure 13: 3D Visualization of MLCV-steered MD paths. The sampled folding pathways of
Chignolin, Trp-cage, and BBA by steered MD with MLCVs from DeepTICA, TAE, VDE, and
BIOEMU-CV.
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C.4 VAMP SCORE

Here, we evaluate the VAMP score (Noé & Nuske, 2013; McGibbon & Pande, 2015; Noé &
Clementi, 2015; Wu & Noé, 2020) on MLCVs, where a higher VAMP score indicates preserva-
tion of dynamic contents. We use VAMP from deeptime library (Hoffmann et al., 2021), with a
time-lag of 10 on the DESRES trajectory data. In Table 10, TAE and VDE show a relatively low
score for bigger molecules compared to other methods. DeepTICA yields a high score since its
training objective is similar to the definition of the VAMP score, and BIOEMU-CV shows similar
VAMP scores in big molecules. However, VAMP scores should not be simply trusted since highly
correlated values could result in high VAMP scores (Noé & Nuske, 2013; Wang et al., 2024).

Table 10: VAMP scores of MLCVs for Chignolin, Trp-cage, and BBA. A higher score indicates
better preservation of dynamic content.

Method Chignolin Trp-cage BBA

VAMP-1 VAMP-2 VAMP-E VAMP-1 VAMP-2 VAMP-E VAMP-1 VAMP-2 VAMP-E

DeepTICA 1.9803 1.9611 1.9611 1.9920 1.9840 1.9840 1.9898 1.9796 1.9796
TAE 1.9686 1.9381 1.9381 1.8787 1.7722 1.7722 1.8902 1.7925 1.7925
VDE 1.9850 1.9702 1.9702 1.9947 1.9894 1.9894 1.8469 1.7172 1.7172
BIOEMU-CV 1.9719 1.9446 1.9446 1.9939 1.9878 1.9878 1.9859 1.9721 1.9721
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C.5 SIMPLE BASELINES

Experiment setup. Here, we show that simple baselines, e.g., PCA and TICA, on Cα-wise distance
fail for Trp-cage. We use the first principal component and the first time-lagged principal component
as CVs. All other details are identical; the training data is for the baseline and BIOEMU-CV,
normalization to the range [-1, 1] over the whole DESRES trajectory data.
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(a) PCA-CVs
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(b) TICA-CVs

Figure 14: Simple method CVs on TICA projections of the full DESRES trajectory. PCA-CVs
fails to discriminate the folded and unfolded state, while TICA-CVs obviously shows correlation
with the TICA using the full DESRES trajectory.

Qualitative results. In Figure 14, we color TICA plot with the CVs. Since the axes were computed
with TICA on the full DESRES dataset, TICA-CVs show high correlation with the x axis. Nonethe-
less, PCA-CVs show meaningless values in Trp-cage compared to MLCVs in Figure 6, failing to
discriminate between the folded and unfolded state.

(a) PCA-CVs (b) TICA-CVs

PCA-CVs TICA-CVs

RMSD (↓) 3.78±0.33 2.57±1.03

THP (↑) 0.0 25.0
ETS (↓) N/A -63660.34±72.59

(c) Steered MD with TICA-CVs

Figure 15: Visualization of transition paths and quantitative results of steered MD. PCA-CVs
fails to reach the target state, where TICA-CVs sometimes reach the target state with a low energy.

Steered MD results. For steered MD, we identically mix with the Cα RMSD CVs in a ratio of
5:5, as for our baselines and BIOEMU-CV. In Figure 15, PCA-CVs fail to reach the target state,
while TICA-CVs often reach the target state with low energy. However, its THP is low compared to
baselines, failing to find meaningful transition pathways.
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C.6 CAPTURING MULTI-PATHWAYS IN ALANINE DIPEPTIDE

Here, we test CVs from time-lagged generation for capturing multi-pathways in Alanine Dipeptide.

Alanine Dipeptide. Alanine Dipeptide is a well-studied molecule consisting of 22 atoms with
two optimal CVs: the backbone dihedral angles ϕ and ψ. We use two meta-stable states C5 and
C7ax, each located at (−2.49, 2.67) and (1.02, −0.70) in (ϕ, ψ). Typically, two pathways are
known to pass near each saddle point in the energy barrier at ϕ = 0 (Holdijk et al., 2023; Seong
et al., 2025). Training data were randomly extracted from 10 ns molecular dynamics trajectories
with amber99sbildn force field and tip3p implicit solvent by OpenMM (Eastman et al., 2023) for
a fair comparison, with five trajectories each initialized in the C5 and C7ax meta-stable state. We
train from scratch with time-lagged conditioning, since the released weights were obtained from a
different force field. Among data pairs (xt, xt+τ ), no transition events exists.

Experiment setup. We use the Transferable Boltzmann Generators (Klein & Noé, 2024, TBG)
architecture for the generative backbone model, namely TBG-CV. For time-lagged conditioning,
MLCVs were concatenated to the node feature of GNNs. DeepTICA and TAE used heavy atom
distances as stated, while VDE and TBG-CV used heavy atom coordinates with Kabsch align-
ment (Kabsch, 1976) for invariance. The autocorrelation loss from VDE was applied to stabilize the
training. The number of parameters of encoders were all identical, with the same training configu-
ration under the mlcolvar library (Bonati et al., 2023).

OPES simulation results. Meta-stable basins were defined as ϕ > 0 and ϕ < 0, using the known
optimal CVs. The first 3 ns of the OPES simulations were discarded, with ∆F updated every 1 ns.
In Table 11, most simulations converge close to the reference free energy difference value obtained
by using dihedral angles as CVs, while TAE exhibits a relatively high variance.

Steered molecular dynamics results. We define the target hit region by dihedral angles, and steer
256 paths by only MLCVs, with k searched for a hundred units. In Table 11, TBG-CV outperforms
other MLCVs with high THP and low ETS , and shows pathways crossing near the saddle points in
the energy barrier in Figure 16. while baselines mostly ignore the energy landscape.

Table 11: Quantitative results of 20 ns OPES simulations and steered MD on Alanine Dipep-
tide. Free energy difference values within the range of 1.25 kJ/mol from the reference are con-
sidered to success. RMSD and THP are averaged over all trajectories, while max energy (ETS)
is averaged over trajectories only hitting the target state. Best results are highlighted in bold and
second in underline in Steered MD.

Method
OPES SMD

SIGMA ∆F k
RMSD (↓) THP (↑) ETS (↓)

Å % kJmol−1

Ref (ϕ, ψ) 0.05 10.06±0.22 200 1.0640 100.00 -3.89±5.80

DeepTICA 0.10 9.99±0.21 400 0.9729 8.59 814.52±115.74

TAE 0.05 9.22±1.74 1200 1.0086 58.59 755.41±92.30

VDE 0.05 10.11±0.28 700 0.8582 5.08 901.69±115.59

TBG-CV 0.05 9.83±1.15 300 0.9593 60.93 33.58±15.19

(a) Ref (phi, psi) (b) DeepTICA (c) TAE (d) VDE (e) TBG-CV

Figure 16: Visualization of hitting pathways from steered MD. Initial state C5 and target state
C7ax are each denoted as white circles and stars, and the red circle indicates the target hit region.
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C.7 HIGH-DIMENSIONAL CVS

Here, we show qualitative results of extending CVs to higher dimensions, bigger than one. We train
an encoder with four-dimensional CVs on BBA, with all other configurations identical.

GLU17
𝛼-helix

LYS6
𝛽-sheet

CV 1 CV 2 CV 3 CV 4

Visualization

Sensitivity

TICA & CVs

Figure 17: Qualitative results of multi dimension CVs on BBA. From top to bottom, we plot the
secondary structure violin plot for two residues, sensitivity analysis, visualization of sensitivity in
the folded structure, and TICA plots colored by the CV value.

In Figure 17, we visualize all the analyses used in the main paper for each dimension of the CVs.
While all CVs are most sensitive to the 11th and 17th residue, other sensitivities differ, indicating
each dimension is looking at different input descriptors and shows a different detailed slow degree
of freedom. Furthermore, the secondary structures and TICA plots between the first and other di-
mensions differ. Overall, the first dimension shows distinct behavior compared to other dimensions.
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C.8 LONGER SIMULATION RESULTS

Here, we report the results of longer OPES simulations. To be specific, we report 9829 ns ≈ 9.8 µs
length simulation for Trp-cage using DeepTICA, computed on four RTX 3090 GPUs for one month.

Table 12: Quantitative results of long OPES simulation on Trp-cage with DeepTICA MLCVs.

Time horizon ∆Fref ∆F |∆Fref −∆F | (↓) PMF MAE (↓)

1 µs 3.70 6.53±7.31 2.73 8.94 ± 7.43
9.8 µs -3.36± 2.76 7.60 7.64 ± 3.81
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Figure 18: Free energy (left) and PMF (right) estimation from 9.8 µ s OPES simulations for
Trp-cage with DeepTICA MLCVs. Green dotted lines indicated the reference value, and blue lines
refer to the free energy difference during the OPES simulations. Solid line refer to the mean, and
shaded areas are standard deviation.

As seen in Table 12 and Figure 18, simulations with approximately ten times longer results do
not fully converge and still exhibit uncertainty. While the folded state is sampled many times, the
unfolded states are not sampled properly, resulting in a gap in the negative range of CVs in the PMF
plot. Overall, longer OPES evaluations do not provide more meaningful insights.
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D ABLATION EXPERIMENTS RESULTS

In this section, we present various ablation experiments on BIOEMU-CV.

D.1 TIME-LAGGED CONDITIONING AND FIXED BIOEMU WEIGHTS

Here, we conduct ablation experiment on not using time-lagged conditions and unfreezing BioEmu’s
parameters, with OPES simulations and Steered MD.

Table 13: Ablation experiments for the components of BIOEMU-CV in OPES and steered
MD simulations. Time-lag indicates whether the model is trained to generated a time-lagged target
conformation, and freezing indicates whether BioEmu’s parameters are kept fixed during the training
of the encoder. Our current design choice shows high performance for SMD results.

Components OPES simulations Steered MD

Time-lag Freezing ∆Fref ∆F |∆Fref −∆F | (↓) PMF MAE (↓) RMSD (↓) THP (↑) ETS (↓)
Å % kJ/mol

✓ ✓ -3.71 -3.19±3.97 0.52 3.07±2.53 1.20±0.33 100.0 -82055.15±98.48

✗ ✓ -3.68 -5.78±3.20 2.10 1.41±1.56 1.57±0.36 81.3 -82084.68±62.86

✓ ✗ -4.47 -3.25±0.81 1.22 3.53±3.73 1.62±0.31 100.0 -82076.42±98.20

Time-lagged conditioning. We input a conformation xt to the MLCV encoder, and condition the
BioEmu to generate xt instead of using time-lagged data xt+τ . Formally, we are testing the denois-
ing score-matching objective modified from Equation (1) as follows:

L(xt, A) = Es∼U [0,1]

[
λs

∥∥∥∇ log ps|0

(
x
(s)
t |x(0)t , xt, A

)
− gϕ(s, ht, z)

∥∥∥2] .
In Table 13, one can see that time-lagged conditioning results in a better performance for both
downstream tasks, i.e., OPES and steered MD simulations. Intuitively, time-lagged data will inject
dynamic information into the MLCVs, resulting enrich representations.

Unfrozen BioEmu weights. We also test whether unfreezing the BioEmu parameters would im-
prove performance, while BIOEMU-CV only trains the parameters of the MLCV encoder. In Ta-
ble 13, MLCV trained with a frozen BioEmu results in a lower RMSD in SMD and better OPES
results. Since the performance is slightly better in unfrozen cases, keeping the lightweight training
scheme is reasonable.
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D.2 ENCODER SIZES AND PLACEMENT

Table 14: Quantitative results of steered MD for different encoder sizes. The performance re-
mains largely unchanged across the encoder size.

Param. Repr. RMSD (↓) THP (↑) ETS (↓)
Å % kJ/mol

48K single 1.20±0.33 100.0 -82055.15± 98.48

1.27M single 1.50±0.30 100.0 -82071.13±100.08

196K single 1.41±0.32 93.8 -82049.40± 98.52

48K pair 1.79±0.45 56.3 -82088.33±76.61
48K single, pair 1.66±0.56 68.8 -82086.61±74.80

Figure 19: Qualitative results of steered MD for different encoder sizes. From left to right, each
visualizes the paths from the steered MD from the encoder with 48K, 196K, and 1.27M parameters.

Encoder size. We test 48K, 196K, 1.27M parameters with layers {2, 4, 8} and hidden dimension
{100, 200, 400} for Chignolin, where the main paper encoder corresponds to the 48K parameter
setting. All MLCVs were mixed with Cα RMSD CVs at a 5:5 ratio. In Figure 19 and Table 14, per-
formance remains largely unchanged across the encoder size. Since the encoder is inferred millions
of times during the OPES simulation, keeping a relatively smaller size would be practical.

Conditioning placement. Additionally, we test whether on how selecting the conditioning repre-
sentation affects on the performance. While BIOEMU-CV conditions the single representation as
ht = MLP(h, ct), we additionally test conditioning the pair representation, i.e., zt = MLP(z, ct)
and both the single and pair representation. In Table 14, RMSD and THP both fall behind the case
of only conditioning the single representation, while the energy shows little improvement.
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D.3 STEERED MD WITHOUT MIXING CVS

Table 15: Ablation experiments of steered molecular dynamics on three fast-folding proteins
in explicit water solvent, without Cα-RMSD CVs. We mark not applicable (N/A) for CVs that
fail at state discrimination and trajectories not arriving at the target meta-stable state.

Molecule k Method RMSD (↓) THP (↑) ETS (↓)
Å % kJ/mol

Chignolin

1000

DeepTICA 7.24±1.49 0.0 N/A
TAE 5.72±1.94 6.2 -81951.53±0.00

VDE N/A N/A N/A
BIOEMU-CV 7.82±1.47 0.0 N/A

2000

DeepTICA 7.01±1.71 0.0 N/A
TAE 6.39±1.74 0.0 N/A
VDE N/A N/A N/A
BIOEMU-CV 6.09±2.21 6.2 -82023.05±0.00

Trp-cage

2000

DeepTICA 2.23±1.23 0.0 N/A
TAE 8.62±3.25 0.0 N/A
VDE N/A N/A N/A
BIOEMU-CV 12.17±1.58 0.0 N/A

5000

DeepTICA 10.78±1.15 0.0 N/A
TAE 7.22±1.71 0.0 N/A
VDE N/A N/A N/A
BIOEMU-CV 7.14±1.52 0.0 N/A

BBA

50000

DeepTICA 7.39±2.71 0.0 N/A
TAE 9.87±1.59 0.0 N/A
VDE N/A N/A N/A
BIOEMU-CV 6.03±2.56 0.0 N/A

100000

DeepTICA N/A N/A N/A
TAE 10.20±1.59 0.0 N/A
VDE N/A N/A N/A
BIOEMU-CV 6.64±1.95 0.0 N/A

Steered MD without Cα-RMSD CVs. Here, we report the performance of steered MD using
MLCVs without Cα RMSD. In Table 15, MLCV steered MD mostly fails to reach the target. The
force constant k was set to the maximum value with simulations not exploding, resulting in different
k values compared to Table 2. Due to this, we have incorporated Cα RMSD for all MLCVs in
Table 2.
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